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Coriolis-force attenuation of blocking in a stratified flow 
By M. R. FOSTER 

Department of Aeronautical and Astronautical Engineering, 
The Ohio State University, Columbus 

(Received 20 September 1976 and in revised form 16 February 1979) 

Even very small Coriolis forces are shown to alter significantly the nature of the 
upstream wake of an object in slow (small Froude number) translation through a 
non-diffusive stratified fluid. If the Ekman number is of order one, the far upstream 
extent of the wake is reduced. If the fluid rotation is sufficient to make the Ekman 
number small, the contraction of the wake is much greater. We study a particular case 
in detail; the Ekman number is small enough to make horizontal boundary layers 
Ekman layers. In  this case, the wake is confined to the vicinity of the object, the 
upstream flow arising from a combination of Ekman pumping and baroclinic vorticity 
generation. The upstream flow is described by an eigenfunction whose amplitude is 
dependent on object geometry. If the object is a semi-infinite rectangular parallel- 
epiped, that amplitude is determined by detailed examination of the shear layer a t  the 
face of the parallelepiped and its interaction with the Ekman layer on the top surface 
of the object. 

1. Introduction 
When a stably stratified fluid flows slowly past an obstacle, a very long upstream 

wake forms in which the fluid is nearly stagnant. This ‘blocking’ phenomenon has 
been reviewed along with other features of stratified flows by Yih (1969) and more 
recently by Barnard & Pritchard (1975). This paper deals with the effects of rather 
weak Coriolis forces on the motion and, in particular, on the upstream wake. 

If the density stratification arises from a solute that has a large Schmidt number, 
such as salt in water, then the fluid may be treated to a first approximation as though 
the diffusion coefficient were, in fact, zero. This means that there are very thin layers 
adjoining the solid surfaces in which the necessary density adjustments occur. Such a 
non-diffusive assumption has been utilized by a number of authors in constructing 
solutions for flow past a variety of obstacles, e.g. Martin & Long (1968), Graebel 
(1969), Janowitz (1971), and Foster (1977). We proceed here with the same sort of 
non-diffusive model. 

As we shall see, even exceedingly small Coriolis forces, relative to buoyancy forces, 
produce considerable changes in the upstream flow. Indeed, we show below that 
for rotation large enough to make the Ekman number based on fluid-layer depth 
small, the effect of the Coriolis forces is to remove the blocked, stagnant region that 
exists upstream of the obstacle in the absence of rotation. 

The parameter that measures the dynamical importance of Coriolis forces m com- - - 
pared with the buoyancy forces is 
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FIGURE 1. Co-ordinate system for flow past a semi-infinite rectangular 
parallelepiped. 

where Q is the angular velocity of the co-ordinate frame; U is the speed of the obstacle 
through the fluid; h, the fluid layer depth; and N ,  the BruntcViiisiilii frequency. 
This number is the ratio of the square of the Froude number and the Rossby number. 

If one compares viscous forces and buoyancy forces, the parameter that results is 

VU 
N2h3' 

€E- 

Here, v is the kinematic viscosity of the fluid; E is the product of square of the Froude 
number and the inverse Reynolds number, v /Uh.  We will assume throughout the 
analysis that the Froude number, U/Nh,  is small. We will also take c to be small, 
which means that viscous effects will be confined to thin boundary and shear layers. 

In  3 2, we show that blocking may occur only if R < E < 1, provided also that the 
Froude number is small. We then discuss briefly the various flow regimes that arise 
for different relative orders of R and 8. The remainder of the paper deals with the 
solution for a particular ordering of R and E ,  viz., when R is of order E*, which turns out 
to be an especially interesting case. 

When R = O(&), the Coriolis forces are of sufficient size that the horizontal surface 
boundary layers are Ekman layers. Upstream of the obstacle, the fluid is pumped 
vertically upward by the Ekman layers. The upward motion in the gravitational field 
creates streamwise vorticity which deflects the stream laterally as it approaches the 
obstacle. This lateral stream deflexion increases the Ekman pumping which increases 
the vorticity production, thereby increasing the stream deflexion, and so on and on. 
Such a positive feedback mechanism gives rise to a vertical motion that grows ex- 
ponentially as the fluid approaches the obstacle from upstream. This process is clearly 
independent of the details of the shape of the obstacle itself. In  fact, the only way in 
which the obstacle geometry affects the upstream flow is in the magnitude of the 
flow deflexion. This sort of eigenfunction in the upstream flow is also an essential 
feature of supersonic laminar boundary-layer separation (see Stewartson 1964, p. 150, 
for example). 

In  this paper, we fix attention on a particular obstacle, a semi-infinite prism 
(see figure 1). We give upstream and downstream solutions for this geometry in Q 4. 
Straddling the step a t  x = 0 is a thin viscous shear layer of width h(e/R2)*. The Ekman 
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layers, with thickness (s/B)+ h in these parameters, are much thinner and flow beneath 
the thicker shear layer. The shear layer interacts strongly with the Ekman layer 
beneath it a t  the 270" corner, internal to the shear layer. The interaction is described 
in detail in $ 5 ,  the numerical solution to the shear layer equations being outlined in 
$ 6 .  The details of the shear layer structure are important since they determine the 
amplitude of the upstream eigenfunction in the outer flow. 

2. Formulation 
We now consider an incompressible fluid, which is stably stratified, that occupies 

the space between two parallel plates whose normal is aligned with gravity. The plates 
are separated by a distance h, and the entire container rotates rapidly about the 
surface normals a t  angular speed Q. A two-dimensional object is in motion though 
the fluid, sliding along the bottom wall, a t  speed U right-to-left (see figure 1). Though 
much of what follows is quite general, the particular obstacle to be considered in 
detail later is a semi-infinite rectangular parallelepiped of height hd. Foster (1977) 
has given the solution for the motion due to such an obstacle in the absence of rotation. 
To describe the flow structure in a steady frame, we use co-ordinates fastened to the 
moving obstacle. 

In that reference frame, the equations of motion under a Boussinesq approximation 
are 

v . u  = 0, (2.1) 

( U . V ) U + ~ Q X U + V P  = vV2U-pgk, (2.2) 

u .vp = 0, (2.3) 

where u is the fluid velocity vector, p is the reduced pressure divided by the mean 
density, and p is the ratio of the density t o  the mean density; g is the acceleration of 
gravity and SL is aligned with k, the z unit vector. The boundary conditions in this 
co-ordinate system are 

z = h! I z = O ,  x < O  and x > L ,  u = Ui on 

if the object has horizontal extent L on x = 0. In  this reference frame 
rest, so 

u = 0 on the object. 

Far upstream, the fluid is undisturbed, so 

Equation (2.3) has the general solution 

P = P(lY4, 

(2.4) 

the object is a t  

(2.5) 

(b2.6) 

where + is the stream function, 
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In  that region of the flow covered by streamlines originating at x = -00, (2.7) and 
(2.6) indicate that 

Introducing (2.9) into (2.2) eliminates p as a dependent variable and the result is 

P = I - - (P /U)$ .  (2.9) 

(2.10) (U . V) u + 2Q x u + Vpl = vV2u + (gP/U) $k, 

where p ,  is p + gz. A steady velocity Ui upstream causes a Coriolis force which must 
be balanced by pressure gradient in the y direction. Thus, we write 

p = -gz-2RUy+gPh2p*, 

u = UU*, $ = Uh$*, x = hx*, 

and substitute into (2.1) and (2.10) to obtain a set of dimensionless equations in 
* quantities. Dropping the *, those equations are 

v.u = 0, (2.11) 

(2.12) P2(u. V) u + 2FSk x (u - i) + Vp = eV2u + $k. 

The parameters characterizing the solution are 

F is a modified Froude number which we shall hereafter suppose to be sufficiently 
small to allow neglect of the nonlinear term in (2.12). X is a measure of the relative 
importance of buoyancy and Coriolis forces, and E ,  a measure of viscous forces. 
Neglect of the inertia of the fluid in favour of viscous forces apparently means from 
(2.12) that F must be small compared to €4, or simply small Reynolds number. A 
proper restriction on F arises later and will be discussed in $7. We deal also in $ 7  
with the nature of the restriction on the Schmidt number, not shown here. 

In the absence of fluid inertia, F and S occur in (2.12) as a product only, so we define 
R = FS.  The slow flow equations (F < €4) are then 

v.u = 0, (2.13) 

(2.14) 2Rk x (u - i)  + Vp = eV2u + $k. 

The non-dimensional version of the boundary conditions (2.4), (2.5) is 

(:I:, x < O  and x > L / h ,  
u = i  on 

u = 0 on the object, 

and the upstream condition is 
u - i ,  x+--oo. 

(2.16) 

(2.16) 
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x extent of 
Range of R upstream wake Solution 

d -g R 0(1), if at all u = l  

e < R - g d  O ( & / W  (3.2) 

R - g €  (3.4) 

3. The far-upstream structure 
Since Iz] < 1 in the region occupied by the fluid, for x large, rates of change with 

respect to x will become very small compared to z rates of change. Under such an 
approximation, elimination of p in (2.14) and use of (2.13) gives 

a4u au 4 ~ 2  
a24 ax E 

e -  - - + - (u- 1) = 0. 

Graebel (1969) obtained this equation with R 3 0 by similar reasoning. For R B d,  
the final term is dominant so u = 1 far upstream and any influence of the obstacle, if 
such exists, is felt near [meaning x = O( l)] the obstacle only. This is the case for strong 
rotation. However, for E < R < d, when the rotation is a bit weaker, the final two 
terms balance and 

u N 1 + C(z) exp (4R2x/e), x -t -a. (3.2) 

The function C(z) clearly depends upon the exact nature of the flow disturbance 
near x = 0. 

For R < E ,  the first two terms are in balance, 

It may be easly shown, with reference to Foster (1977)) that the asymptotic solution 
of (3.3) is 

u - l+A,$,(z)exp(k!ex), x-+ -m, (3.4a) 

where k, is an eigenvalue, 4.73004, and c$l an eigenfunction given by 

Ibl(z) = sin(k,z)+sinh (k ,z)+ (cotk,-coseck,) (cos(klz))-cosh (klz)). (3.4b) 

In  terms of far-upstream flow disturbance, we summa;rize the results in table 1. 
The entry R < E is equivalent to large Ekman number, v/Qh2. If R = O(E), then the 
solution is of the complete equation (3.1) which may be easily shown to be ( 3 . 4 ~ ~ )  with 
A,  multiplied by the factor exp (4R2 

I n  conclusion, there is far-upstream penetration of the wake only for 

S = O(Rea).  (3.6) 
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4. The solution for R = O ( d )  ; the outer flow 
We now construct the solution to (2.13), (2.14) for R < 1, with R = O ( d ) ;  the 

boundary conditions are given by (2.15). We proceed by putting E = uR3, where u is 
of order unity. Equations (2.13) and (2.14) then become 

v . u  = 0, (4.1) 

( 4 4  2Rk x (u - i)  + Vp = aR3 V2u + $k. 

The outer expansion for R + 0 is 

(:) = (2) + R ( Z )  f..., 
v = R-lv,+vl+ ..., 
p = po+Rpl+  ..., 

and substitution into (4.1), (4.2) yields, on elimination of po ,  

(4.3) 

uo = 1, (4.4a) 

(4.4b) 

(4.44 

For u = O( I), Ekman layers exist on all non-vertical surfaces in the flow, so the Ekman 
compatibility conditions may be appended to (4.4) to account for the presence of the 
boundaries. 

The upstream solution 

In  x < 0, the boundaries are z = 0 and z = 1, and the Ekman conditions are 

Since ( 4 . 4 ~ )  indicates w, = wo(x), (4.46) may be integrated to give 

w, = A(x)-w,z/2,  (4.6) 

and A ( x )  is as yet an arbitrary function. Application of the conditions (4.5) to the 
solution (4.6) results in an equation for A in terms of wo and 

dw, 8 
dx u4 w, = 0. 

The solution is 

and v,, from (4.6), is 
wo = Cexp (8x/u4), 

vo = &'(a - z )  exp (8z/d). 

We note that the structure of the upstream flow given by (4.8) and (4.9) is independent 
of the details of the disturbance in the channel. Only the value of the constant C ia 
dependent on the character of the flow disturbance. 
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The downstream solution 

The results (4.8), (4.9) are quite general. However, the downstream (x > 0 )  structure 
is strongly obstacle-dependent, and so we suppose for definiteness that the object is, 
as indicated in $2 ,  a semi-infinite rectangular parallelepiped whose top face is a t  
z = d in x > 0. The equations (4.4) are obviously still applicable downstream. Note 
that, from (4.4a), the volume flux in the fluid over the prism is (1 - d ) ,  whereas a flux 
of unity must be carried downstream. The Ekman layers on x = d and z = 1 each 
carry, to leading order, a flux of amount (see Greenspan 1964, p. 46) 

- *&), 
so, if the excess flux d is to be carried by the Ekman layers, clearly vo must be given by 

v0 = - d / d .  (4.10) 

Actually, if the object is not a rectangular parallelepiped, but another semi-infinite 
solid with a vertical face of height d at x = 0, it  is easy to show that (4.10) should be 
replaced by 

- 2 d / d  
vo = 1 + (1 + (f')")t' 

(4.11) 

where f'(x) is the slope of the top of such an obstacle. Bearing in mind that this 
generalization is easily made (for all shapes for whichf'(0) < a), we deal below with 
(4.10). 

We now summarize the first-order outer solution for flow caused by the motion of 
the rectangular parallelepiped, namely 

uo = 1, 

I (4.12) 

The constant C is not yet determined, and may only be determined by the careful 
investigation of the structure of the vertical shear layer on x = 0, which we undertake 
in $ 5 .  

5. The vertical shear layer 
At x = 0, there exists a thin vertical shear layer which smooths the discontinuities 

of vo and wo indicated in (4.12). The usual thin-layer approximations applied to (2.13), 
(2.14) give 

au aw -+- = 0, 
ax a2 
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Equations (5.2), (5.3) would be the familiar Stewartson layer equations were it not for 
the '-w' term in (5.2), arising from fluid buoyancy. A careful study of the equations 
shows that there are two distinct layers. The thinner layer has width d R  and does 
not arise in this context. 

The thicker layer has width (crR)+. Writing x = (crR)*[ end substituting into (5.2) 
and (5.3) gives 

av 
a Z  

2R -+w = 0,  (5.5) 

where terms of order Rf have been neglected. The Ekman layer is of width R, and so 
penetrates underneath this relatively thicker layer. The Ekman compatibility con- 
dition in these variables is, from (4.5), 

The sizes of v and w in this shear layer are determined by matching to the outer 
solution, (4.12). Writing 5 = (crR)+c in (4.12) and expanding for (crR)+ + 0, we obtain 
the matching conditions for the layer solutions, namely, 

1, 151 +a, ( 5 4  

(6.9) I $CR-'(B - Z )  + O(R-jE), 

- dR-ld, E-. +m, 

t+  -a, 
t-+ +a. 

5 + - CO, 

In  addition to matching to the outer flow as indicated by (5.9), solutions to (5.4)-(6.6) 
must also obey the no-slip condition on 6 = 0, 0 < z < d. Equation (5.5) indicates 
that, if v = 0 there, then w = 0 also. For u to be zero, (5.6) indicates a2v/8t2 must have 
a particular value, so the boundary conditions are 

P V  v = o  2 )  on g=o,  O < z < d .  

Examination of (5.9) and (5.10) indicates that the shear layer solution should have 
the following expansion: 

(5.11) 

(5.10) - = -- 
dR* 

= V-+R--+~+RR-~K+ ..., 
w = dB-+T&+++ ..., 

where upper case letters hereafter denote shear layer solutions. 
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The leading-order equations from substitution into (5.4) and (5.5) are 

and the boundary oondition is 

v , = o  

(6.12) 

(5.13a) 

(5.13b) 

The matching conditions indicate that 

%,K+ 0, [ 5 j + a .  (5.14) 

Substitution of (5.11) into the Ekman condition, (5.8), indicates that aq/a( must 
vanish on horizontal boundaries. That together with (5.14) yields 

& = O  on z = 1 ;  z = O ,  5 < 0 ;  z = d ,  ( > O .  (5.15) 

Discussion of the shear-layer solution 

Because of the complexity of the analysis to follow, it is appropriate to first discuss 
the physical mechanism inherent in the solution. Since the boundary condition on the 
horizontal surfaces is, from (5.151, V = 0, it  is clear from (5.12) that W will not in 
general be zero on those surfaces. This means that fluid in the shear layer flows in and 
out of the much thinner Ekman layers on these horizontal surfaces. The volume flux 
associated with the V, solution is order unity, the same as the order of the volume flux 
in the Ekman layers in the outer flow upstream and downstream of the shear layer. 

Therefore, the shear layer rearranges the volume of fluid flowing in the Ekman 
layers beneath and above it. In  particular, the net volume flux entering the Ekman 
layer under the shear layer on z = d ,  from 5 = 0 to f = 03 must be W,t the volume flux 
carried by the Ekman layer on z = d in the flow downstream of the layer. So we 
require 

d ( =  - i d .  (5.16) 

Since (5.12)-(5.15) constitute a well-posed parabolic problem, one cannot append 
an additional condition (5.16). We show, however, that (5.13) must be slightly mod- 
ified to allow for a singularity in the solution at  the 270" corner at ( = 0, z = d .  Proper 
choice of this singularity strength makes satisfaction of (5.16) possible. The singularity 
owes its existence to shear layer-Ekman layer interaction, a feature noted in a 
somewhat similar situation by Moore & Saffman (1969). As in their case, a family of 
singularities exists, and we choose the weakest singularity. 

the appendix. 

z=d 

t This assumes there is no source-like Ekman layer eruption at 6 = 0. That is confirmed by 
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The structure of the solution 

As indicated above, solution of (5.12)-(5.15) cannot also satisfy (5.16). We now, in 
anticipation of possible shear layer-Ekman layer interaction, resulting in singularities 
at  z = 0, 6 = 0- or z = d ,  6 = 0 + ,  replace (5.13) by 

I 
(5.17) 

where f = 0 except near z = 0 and/or z = d .  

using (5.14), 
Integrating ( 5 . 1 2 ~ )  over the portion of the shear layer in z 2 d, we obtain, also by 

I m & d S  = A(1-z). (5.18) 

A is a constant to be determined. Integration of the same equation in 0 < z < d ,  
-XI < 6 < 0, using (5.17), leads to 

(5.19) 

where B is another integration constant. 

z = d ,  
A and B are not independent since V, is continuous on z = d ,  < 0 and zero on 

> 0. Thus, 

Using (5 .12b) ,  we can write 

and 

+ /: f (s) ds  - /:sf (8 )  d s .  
2A(  1 - d )  

d 
WodC = Z - B d -  

(5.20) 

(5.21) 

Evaluating both of these expressions at z = d ,  we subtract (5 .21b)  from ( 5 . 2 1 ~ ) .  
Continuity of Wo on z = d ,  f; < 0, then leads to 

Jom&l dE = 
z=d 

Comparing with (5.16), we see that f must be such that 

/:sf(s)ds = - 2 A .  

(5.22) 

(5.23) 

Whatever singularities are inherent in f, their strength must be such as to satisfy 
(5.23).  Recall also that ( 5 . 2 1 ~ )  may be written as 

(5.24) 

In  the appendix, singular solutions to (5 .12)  near 90" and 270" corners are foundina 
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FIGURE 2. Outer flow streamlines for a semi-infinite rectangular parallelepiped with d = ). The 
shear layer location is shown schematically by the broken lines. 

fashion very like that employed by Moore & Saffman (1969). A number of eigen- 
functions are determined in each case. We show there that, though there are no 
source-like solutions at either corner, a doublet-like singularity may occur at the 270" 
corner. Now, since the singularity occurs over a region that is o( 1) in z, it  is equivalent, 
so far as the shear layer solution is concerned, to the generalized function s l (z  - d). 
Satisfaction of (5.23) determines its amplitude, hence 

ffz) = 2A6'(~ - d - ). (5.25) 

Therefore, the shear layer problem is constituted by (5.12), (5.14), (5.15) and, 
replacing (5.13), 

a2K/at2 = -2+4Asl(z-  d - )  on 6 = 0, 0 f z < d. (5.26) 

Connexion of A and C 

The inviscid solution of $ 3  indicates that the volume flux in the Ekman layer on 
z = 1 - in x < 0, as it enters the shear layer from the left, is 

d 
-g c, 

and also that the volume flux in that same Ekman layer leaving the shear layer on the 
right is 4d. The difference in these, d C / 8 - + d ,  must be the net downward flux 
inside the shear layer at z = 1, - 2A. Therefore 

4 
U i  

c = - (d-4A).  (5.27) 

So the solutio, in the outer flow is dependent on the shear layer structure through 
the value of A .  In  $ 6 we discuss the numerical means of obtaining values for A .  We 
find there that, for d = 9, A = 0.0566 and therefore d C / 4  = 0.274. Figure 2 shows 
the streamlines for d = + using this value of C in (4.8). 
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6. Numerical solution of the shear layer equation 

conditions formulated in 0 5, 
In this section, we describe the method of obtaining a solution to (5.12) subject to 

V = O  on 2 x 1 ;  z = O ,  < < O ;  z = d ,  E > O ;  E = O ,  z < d ;  (6.1) 

where V(1) and V 2 )  are each solutions of (5.12), subject to (6.1). It is important to note 
that if V(2) is a solution to (5.12) satisfying (6.1), then aZV2)/az2 is also a solution. 
Therefore, (6.4) represents J' as a linear combination of three solutions. The particular 
form of (6.4) follows from the conditions on = 0, z < d, namely 

82 V(2) 

at2 
-- - 2(1- cos ( z r / d ) ) ,  on = 0, z c d. 

(6.5a) 

(6.5b) 

Careful differentiation of (6.4) and substitution into (6.2) shows that indeed that 
condition is satisfied. Having obtained V 1 )  and W )  for (6.4), one can calculate 

Notice that since 82V(2)/8z2 is proportional to the third E derivative of V2), by (5.12), 
the Q associated with that solution is easily seen to be exactly zero. Differentiation of 
(6.4) by z then yields 

Thus, the parameter A of the solution is evaluated and can be used in (6.4) to 
determine V completely. 

The numerical method 
The rationale for choosing V1) and P) in the way described is that the boundary data 
is smooth, thus eliminating the difficult handling of 8' in a numerical procedure. 
Numerically, then, we have to solve (5.12) with conditions (6.1) and (6.5), so we write 

We proceed by writing (5.12) in finite difference form in the usual fashion, using 
differences centred both in and z. The result is 

- h - 2 ,  j + 2h%l, 3 + %, j - 2A%+l, 3 + A%,,, j = Wi, j-1+ %, j+lh (6.8) 
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_c_ 

- 

z - - c 

-1 .5  - 1 .o -0.5 0 0-5 

t 
FIGURE 3. Shear layer streamlines for d = 4. The plot is for the case k = h = 0.02, SO fine 
resolution near the corner is not possible. The mesh size is shown in the figure for comparison. 
The stream function differs by 0.1 on adjacent lines. 

where h = h2/16k3; h is the z spacing in the grid and k is the 6 step size. The errors in 
this differencing are O(h2) and O(k2).  The first subscript refers to the 6 direction, and 
the second to the z direction. The boundary conditions are easily written down, and 
(6.8) is solved by relaxation. We use a line-relaxation method, sweeping the grid from 
z = 0 to z = 1; such a procedure involves inversion of a penta-diagonal matrix on 
each line, which can be done very efficiently (using DGELB in the IBM SSP library), 
and this method converges much faster than point-relaxation (0. R. Burggraf 1977, 
private communication). 

Since the 6 range is doubly infinite, a t  the 6 boundaries of the grid we require that 
v have the proper asymptotic structure. It is easy to verify from (5.12) that 

‘V N ( A  exp [p6] + B exp @I) sin (nz), 6 -+ - 00, 

v Be+sin(-), n(z - d )  g+ +a, I-d 
where 

and (-) denotes complex conjugate. 
All calculations were done in double precision (64 bit) arithmetric on the IBM 370 

of the Ohio State University Instruction and Research Computer Center. Truncation 
error studies were performed, with the most accurate solution obtained characterized 
by hand k of 0.01 in a grid 100 by 500. Throughout the calculations, iteration termina- 
tion occurred with repeatability errors of less than 0.0001. 

Computed values of Q(1) and Q ( 2 )  had to be adjusted to account for the exponential 
tails of the solutions not included because of the finite size of the 5 domain. Equation 
(6.9) supplies an analytical Q correction. We used h2 extrapolation to obtain accurate 
values of &(l) and &@). For d = &, those are 

Q(1) = - 0.0285, 
Q@b = 0.0411. 

(6.10) 
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Using (6.7), we compute A to be 0.0566. Shear layer streamlines were obtained and 
are shown in figure 3. 

7. Final remarks 
The solution presented in $8 3-6 was predicated on two assumptions, namely that 

both the diffusivity of the fluid and its inertia may be neglected. As stated in $ 2 ,  
neglect of the fluid inertia in general requires that F < €1. In  terms of the analysis 
of $5 3-6, that means F < R3. This requirement can be lessened somewhat by looking 
in detail at the shear-layer and Ekman-layer equations. The more severe restriction 
on the order of F comes from the requirement that radial transport of angular mom- 
entum be negligible in the shear layer, 

F < R t d .  (7.1) 

For the effects of diffusion to be negligible in the inviscid flow upstream and down- 
stream of the prism face, it  is necessary that the Phclet number, Uh/tc, be large 
compared with unity. However, the effects of non-zero diffusivity will modify the 
Ekman layers unless 

Therefore, (7.1) and (7.2) must both be satisfied to ensure the validity of the solution. 
The eigenfunction solution found upstream of any obstacle for R = O ( d )  will occur, 
however, if (7.1) is violated, but then the shear-layer structure is not that given in $4. 
In that case, the linearity of the Ekman layer appends a restriction somewhat weaker 
than (7 .1) ,  

F < R. 
Further study has shown that, if we abandon the non-diffusive restriction (7.2), a 

solution not unlike the one presented in §§ 3-6 may be found; the details there are a 
bit more complex, though the shear layers appear in that case to be Stewartson layers. 
Details will be given a t  a later time. 

Pe B R-2 rl. (7.2) 
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Appendix 
We seek solution to 

in regions of semi-infinite or infinite extent in both 6 and z. Such solutions must be 
of self-similar type, 

21 = PF(V),  11 = $/($2)3. (A 2) 

(A 3) 

Substitution of (A 2) into (A 1) yields 

F ” - T , I ~ P “ + ~ ( ~ ~ - Q ) ~ F ’ - @ z ( ~ -  1) F = 0, 
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which may be solved by substituting into (A 3 )  the following: 

The ordinary differential equation that results for Q has 1/2-order Bessel function 
solutions which may be written as 

Q = p-1-3" a exp[ k ( l + i ) ( 2 * / 3 ) p # ] .  (A 5 )  

The end-points (a,  b )  of the integration path in the complex p plane must be such that 

Since we are interested in solutions that are small, away from the corner region, we 
suppose that n < 0. In that case, a may be taken a t  the origin, from which point a 
branch cut extends along the negative real axis. Linearly independent solutions are 
H,, B,, and G, where 

O3 dP } (A71 
Hn(7) 3 so ~ e x p  [-  ~ T P  - ( 1  + i f  ( " / 3 ) ~ ' 1 ,  

Gn(7) IoW&2 exp [ r ~  - ( 2 / 3 )  hl* 

We notice that H, is bounded for all 7; Gn is bounded in 7 < 0 only. 

Solution in &plane: [ < 0, z > 0 

In the 4 plane [ < 0, z > 0, a solution to (A 1)  is 

v = zn [AH,(7) +BBn(7) + BGn(7)]. (A 8) 

The appropriate boundary conditions for eigenfunction solutions are 

v = o  on z =  0, 7 < 0 . 1  
We need the asymptotic forms of H, and G, for 7 + - co to apply the second of these 
conditions . 

It is easy to show that 

(A10) 
H, N exp [ - i(3nn/4)] ( - 7)3nW( - 3n/2), 7 

G, N ( - 71)3n'a I?( - 3n/2), 7 + - 00. 
Thus 

A exp [ - i( 3nn/4)] + 2 exp [i( 3nn/4)] + B = 0. (A 11) 

We also need special values of Hn and G, a t  7 = 0 to apply the other conditions 
in (A g), namely 

(A 12) I H,(O) = (+)l--, r( - n )  exp (inn/4), 

H,(o) = ($)a+ r(+ - n )  exp [i(nn/4 - +n)] ,  

Gn(0) = (#)l*r( -n ) ,  

ai(o) = (#)-*-" r(+ - n).  
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Using (A 12) with (A 9) gives 

A exp (inn/4) + B exp ( - inn/4) + B = 0, 

A exp [i(nn/4 - An)] + exp [ - i(nn/4 - An)] + B = 0. 

Simultaneous solution of (A 10) and (A 13)  leads to the characteristic equation 

sin (nn) 
39 

1-cosnn-- = 0, 

which has solutions 
n = -Q+21, 1 = 0, -1 ,  - 2 ,  .... (A 14) 

Solution in the $ plane: f < 0, z < 0; z > 0 
I n  a similar fashion one can construct a solution to (A 1) in f < 0, z < 0, z > 0: 

= 2" [AHJV) +XB"(V)], z > 0, 

v = ( -  2)" [BH,(r) +BBn(~)  + C G n ( ~ ) ] ,  z < 0, 6 < 0. 

The homogenous conditions to be used are 

v = o  on z = O ,  f >  0, 

and the solutions must be appropriately joined on z = 0, by requiring continuity of 
v and av/az. Those five conditions serve to determine A ,  B,  and C in the same way m 
before. The characteristic equation in this case is 

sin ( 3 4 2 )  cos (nn - in) = 0. 

There is obviously a double infinity of values of n satisfying this equation, namely 

n = @, 

n=++1 ,  1 = - 1 , - 2  ,.... 
k = - 1 ,  - 2 ,  ..., 

The largest few values are - 4, -3 ,  -$, - 2, -2 3, -.-. 

Significance of the solutions 

In  connexion with the solutions to the shear layer discussed in 35, we raised the question 
of possible singularities of the solution, connected with Ekman-layer eruption 
at 5 = 0, z = 0 and at 6 = 0, z = d. Considering the $-plane solution fmt, with 
w = - 2av/az, (A 8) and considerable algebra leads to 

so we see that no n < 0 leads to a finite source at the corner in the 
analysis of the $-plane solutions leads to 

plane. Similar 
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Again, no value of n < 0 leaves (A 17) bounded for z+O. Then, we conclude, no 
source-like singularities exist, for n < 0. 

If we look for solutions with doublet-like structure, we find, for the & plane, that 

(A 18) 

Since n = -*  is not an eigenvalue in the f-plane problem [see (A la)], there is no 
&plane singularitywith a finite value of ma as z + 0. However, n = - + is an eigenvalue 
for the $-plane problem [see (A 15)], so that 

ma = [ w d t  = -$3*(#)"z"+i r( - n - + )  Im ( A  exp [inn/4]). Lm 

ma = - 4 x 3%& I?( - n - 9) Re ( A  exp [i( fnn + +r)]), (A 19) 

shows a finite value for z + 0 in that case. 
In summary, the +plane solution has no source or doublet singularities; the # plane 

does possess a doublet singularity for n = -4. It should be noted that other eigen- 
values in the lists (A 14)  and (A 15) correspond to finite values of other higher integral 
moments of w. Those singularities are equivalent to, so far as the overall shear layer 
solution of $ 5  is concerned, more and more singular generalized functions like 
6"(z - d) ,  etc. 
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